
30th Florida Conference on Recent Advances in Robotics, May 11-12-2017, Florida Atlantic University, Boca Raton, Florida

Color Tracking Load Bearing Wheeled Rover

Erim Gokce, Alfonso Jarquin, Johnny Louis, Neha Chawla, Sabri Tosunoglu

Department of Mechanical and Materials Engineering
Florida International University

Miami, Florida 33174

egokc001@fiu.edu, ajraq004@fiu.edu, jloui034@fiu.edu, nchaw002@fiu.edu, tosun@fiu.edu

ABSTRACT
This paper entails the mechanisms of operation, prospective
market desire and consumer benefit of a motorized autonomous
rover with adaptable tracking and following capabilities.

Keywords
Wheeled rover, tracking, color tracking, load carrying.

1. INTRODUCTION
1.1. Problem Statement
As society continues to strive towards automation of repetitive or
laborious tasks, it becomes necessary to locate the areas where
simple implementation and energy-saving potential coincide.
Manual labor is one such area, where significant scale of humans
still perform physically demanding tasks that have the potential
of being completely automated.

1.2. Motivation
There exists a multitude of benefits, both on the corporate and
individual levels, in having the ability of an intelligent rover to
follow a user-controlled moving target. The primary feature of
such a device would be in towing of items from one location to
the other. This rover can be used at industry for transporting tools
or scrap materials or at home for grocery shopping. The main aim
of this robot is to reduce the human effort in carrying heavy loads
thus preventing any injury from lifting. It can also be used for the
disbursement of pesticides across a pre-set grid or the chlorination
of a swimming pool. In the interest of preserving the versatility
of this rover, the concept build outlined herein will not contain a
load-bearing or load-towing feature.

1.3. Literature Survey
Automated robots are currently used in several industrial
applications. They are used in warehouses, factory, and to
transport products or items from one point to another. These
robots are normally traditional 4 wheeled moving platforms
rovers. They are low to the ground with a very high load capacity.
They can carry weight several times that of themselves. The
research conducted prior to the design of the robot was carried out
with the intent to learn not only about vehicle automation and

drivability, but also the current uses, applications and models
available to the public with similar uses.

Figure 1. Amazon warehouse automated guided vehicles
(AGV)

The primary type of guided robot discovered in the research phase
was an AGV, or automated guided vehicle. AGVs are platform
like robots which follow predetermined paths from point to point
and move cargo across busy warehouse floors. The AGVs use
different markers to define their paths like laser triangulation,
magnetic strips, colored lines, wire markers, magnetic grids, and
natural feature recognition. Each type of technology has its own
advantages and can be used according to the application of the
robot.

2. DESIGN CRITERIA
We have used the colored line recognition and the natural feature
recognition in our robot design. The colored line tracking will
allow the robot to drive via an “eye” which is located on the front
bottom side. The “eye” detects the colors on the floor and drives
the robot while maintaining the colored line in sight at all times.
Our design will be able to track users based on color and will also
be programmed to maintain a certain distance between the robot
and the user.

2.1. Selecting the Camera
An important feature of the rover would be its adaptability and
versatility when it comes to following an objective. Since it is

30th Florida Conference on Recent Advances in Robotics, May 11-12-2017, Florida Atlantic University, Boca Raton, Florida

necessary for the rover to stay locked onto a target, the need for
the rover to feature a camera as its main tracking tool became
apparent. Research was conducted into the use of pre-prepared
libraries such as OpenCV, which when married with a camera,
can perform as desired. We used PixyCam, an 80x80 pixel camera
since it features the foundation of the data acquisition and
relaying feedback mechanism that was required of this tracking
system. The PixyCam can be programmed to track a specific hue
of color, or a pattern of up to seven hues in proximity of each
other. It is also capable of relaying coordinates of height, width,
distance back to a microcontroller. This set of features would be
integral in having the robot working properly

Figure 2. PixyCam, a crowd-funded tracking camera
.

2.2. Powering the System
The tracking rover would require a simple system of power that
is long-lasting and low in weight. There are multiple components
on the rover that require power, such as the camera, the
microcontroller, and the motors. Since minimizing the weight is
of the utmost importance, We chose to power the robot with a 9V
dry cell battery and a 12V set of 8 AA batteries connected in-
series. This method would prove to be optimal against other ideas
such as a rechargeable battery pack, which could not supply the
voltage required to drive the motors, as well as be the necessary
fit and weight.

2.3. Driving the System
A set of DC motors that are used in various DIY RC home kits
was selected for our prototype since it had a gear-ratio of 1:48 and
a no-load speed of 200 RPM. While they are rated at 6V, we found
that supplying twice the amount of voltage yielded no issues and
with the inclusion of a motor shield on the microcontroller, which
would be an Arduino Uno, the rover would be capable of being
speed-controlled consistently with the included encoders.

For the small scale of this project, it was deemed best to favor DC
motors over servomotors, for their power output. The Arduino
Uno is incapable of supplying the sufficient wattage needed to
drive both DC motors, so it became necessary to attach a separate
motor shield, which would be independently powered by the 12V
source. The 9V battery would power the Arduino, which connects

through a ribbon cable to the PixyCam, powering it as well. This
method supplies everything sufficiently and is low in weight and
cost.

Figure 3. A DC motor with encoder and wheel attached

Figure 4. Motor shield mounted onto an Arduino Uno

For the included DC motor, there was also included a pair of
encoders. These encoders can track the revolutions of the wheel
in real time, and pre-setting a desired max RPM. Therefore, the
supplied battery that is double the voltage that the motors are rated
for should not be an issue. The encoders will keep the wheels
spinning at the rate needed to keep up with the walking pace of
an adult human, and this limitation of output will preserve battery
life, effectively doubling the rate of runtime without needing to
replace the batteries.

2.4. Rover Chassis
The chassis of the rover should be comprised of both metal and
acrylic. The bottom base is metal, for stability and support, and
the top level is acrylic, to house the electrical components since it
will not conduct electricity.

2.5. 180° Rotation of View
The implementation of visuals in the robot must be capable of
viewing angle of at least 180° to minimize power draw by
preventing unnecessary rotation of the robot when possible, as

30th Florida Conference on Recent Advances in Robotics, May 11-12-2017, Florida Atlantic University, Boca Raton, Florida

well as provide more rapid and sophisticated tracking method. For
this reason, a dual-servomotor setup was implemented into the
base of the PixyCam, which would allow for both panning left to
right and tilting up and down of the camera. The programming
will notify the servos the correct time to rotate or tilt the PixyCam,
per which motor is require to engage to keep the centroid of the
object centered.

Figure 5. A pan/tilt servomotor setup, compatible with
PixyCam

2.6. Communication and Instruction
For instruction of the PixyCam for when to pan and tilt, as well
as for the communication to the motors of when and how rapidly
to turn, the base hub of the system was chosen to be the Arduino
Uno. The Arduino will be programmed with the instructions of
how close to travel to the stimulus, obstacle avoidance, reversing,
full rotation of the body, and full relaying of the coordinates
provided from the PixyCam to the motor shield.

The methodology of tracking will be handled by the
accompanying software, PixyMon. The software is intuitive to
use and relays the necessary data. PixyMon allows tracking of up
to seven different items, each item with the option of being
comprised of just one tracked hue, or up to a pattern of seven. The
tracked objects can be tracked to a much beyond needed distance,
provided the object is of sufficient size. The PixyMon software
separates each object into a “block” for which it assigns a
signature. This block signature can be relayed back to the Arduino
with important information, such as the height, width, and
distance of the block. These parameters can be taken as X, Y, and
Z coordinate data, and put to good use in telling the DC motors to
operate. A computer is needed to tag blocks.

PixyMon is taught a block by holding up the item in front of the
PixyCam, and selecting the “Set Signature” option. This allows
the user to select in a rectangular box of desired size, the item
shown on screen. PixyMon then highlights the entire object of the
selected hue, and assigns it a signature. This is stored inside the
PixyCam after disconnected from the computer.

Figure 6. The PixyMon tracking software interface

3. CONCEPTUAL PROTOTYPE DESIGN
The initial, conceptual design of the robot was brainstormed to be
constructed out of 3D printed ABS plastic. The base would be a
printed piece in the shape of a skateboard, and attached to stacked
platforms inside which electronics and batteries could be stored.
The design features a small compartment on the back to carry
items, and the propulsion would be through front-wheel drive. A
rear idler wheel would keep the platform stable.

Figure 7. A conceptual design of the robot, with storage crate

We discovered that the method of 3D printing was more cost-
prohibitive than purchasing multiple pre-made platforms which
could be adjusted to affix to one another. Also, a design choice
was made to remove the storage crate from the final prototype, to
preserve versatility. It was decided to instead run a side
production of a towing crate which could be affixed to the final
robot, and could be reliant on its power output to be carried
around.

An additional feature of the conceptual design was that it would
be run off a rechargeable battery pack (See Fig. 7, battery pack in
green). This was removed in the final product to minimize weight.

30th Florida Conference on Recent Advances in Robotics, May 11-12-2017, Florida Atlantic University, Boca Raton, Florida

4. FINAL PROTOTYPE DESIGN
The completed prototype is constructed from an aluminum base
which houses the wheels, batteries, and DC motors. The base
connects to an acrylic roof, on top of which the electrical
components are mounted. The Arduino Uno, motor shield, and
PixyCam are secured to the top through holes drilled into the
acrylic. These components connect through wiring to the bottom
metal base. The wheels attach to the DC motors, those of which
are secured to the metallic bottom through hot glue. The front
idler wheel was screwed in to the slots in the front of the chassis.

Figure 8. The completed prototype

As mentioned prior, the prototype does not feature a load bearing
capacity. However, the prototype can withstand towing a load of
1-2 lbs, which can be stowed on a platform that can be easily
attachable to a hitch on the rear of the robot. A detriment of
including a hitched tow would be in the reversing of the robot, so
it is of our’s interest to gauge the demand for this product and, if
sufficiently significant, modify the design to include the load
crate.

Figure 9. A side view of the robot

Certain design choices were made that vary from the original
concept. The final robot is now rear-wheel driven, as opposed to
front wheel driven. The multi-level platforms were removed in
favor of one singular platform, which would improve stability.
The batteries are mounted on both the top and bottom of the metal
portion, with the bottom battery pack secured with Velcro. The
wheels are wider than in the original concept. There is sufficient
clearance between the batteries and the ground.

4.1. Size and Weight Specifications
The robot weighs just over eighteen ounces. It is eight-and-a-half
inches long and six inches wide. The height is six inches. The
robot was designed to be scalable, so a consumer-ready product
would scale to two feet and ten inches long, two feet wide, and
two feet high. The final product would be much denser,
approximately 20 pounds due to the batteries, all-metallic
infrastructure, and powerful motors.

4.2. Cost Breakdown Analysis
Much of the expenditure was towards the PixyCam. However, it
is of important note that this price will remain stagnant and will
not become costlier with the full scaled model. Many of the
components were already on-hand, however we felt it necessary
to identify the true cost of this project.

Table 1. Total Cost Breakdown of Color Tracker Robot

Component Quantity Price
Arduino Uno 1 $19
Metallic Platform 1 $16
Motor Shield 1 $25
Acrylic Platform 1 $12
Wheels 2 $4
9V Battery 1 $2
AA Battery 8 $5
PixyCam 1 $79
Servos for Pixy 2 $20
DC Motors 2 $10
Cables/Connectors Various $10
FINAL $202

4.3. Methodology of Connection
The 12V battery pack supplies its energy through a positive and
negative cable, which secures into the motor shield in the
SUPPLY and GND terminals. This motor shield has two output
nodes which route the voltage into the two DC motors through
positive and negative wire which are soldered onto the motor
terminals. The motor shield rests directly on top of the Arduino,
and is secured through the numerous pins which are custom-
matched to fit into the Arduino’s analog, digital, and power
inputs. The Arduino itself is powered through the 9V cable. The
PixyCam shares power draw with the Arduino, and is connected
to it through a custom ribbon cable attached to an in-circuit serial
programmer node. Finally, the PixyCam is secured to a base
which we constructed with two 180° servomotors, which control
the pan and tilt functions of the PixyCam.

30th Florida Conference on Recent Advances in Robotics, May 11-12-2017, Florida Atlantic University, Boca Raton, Florida

5. CONTROL THEORY
The bulk of the control theory is through the relaying of
information from PixyCam to the motors. It was necessary to
program the Arduino to be the middleman in this interaction.

5.1. Language and Method
The language used was C++. The code required an object-
oriented programming language, and C++ is native to the Arduino
environment. The code relies heavily on object calls and if
statements. The idea is to teach PixyCam an object, and scrape
the data it relays into Arduino, which is taught to react to that
information accordingly.

5.2. Code Breakdown
The code begins by establishing a servo loop class, a
proportional/derivative feedback loop for the pan and tilt servo
tracking of the “block”. This ensures that the robot remains
stationary if the angle is changing, but the proximity of block to
robot is unchanged.

class ServoLoop
{
public:
ServoLoop(int32_t proportionalGain, int32_t
derivativeGain);
void update(int32_t error);
int32_t m_pos;
int32_t m_prevError;
int32_t m_proportionalGain;
int32_t m_derivativeGain;};
// ServoLoop Constructor
ServoLoop::ServoLoop(int32_t proportionalGain,
int32_t derivativeGain)
{
m_pos = RCS_CENTER_POS;
m_proportionalGain = proportionalGain;
m_derivativeGain = derivativeGain;
m_prevError = 0x80000000L;}

The servo loop then updates, by calculating a new output based
on the measured error and the current state.

void ServoLoop::update(int32_t error)
{
long int velocity;
char buf[32];
if (m_prevError!=0x80000000)
{
velocity = (error*m_proportionalGain + (error -
m_prevError)*m_derivativeGain)>>10;
m_pos += velocity;
if (m_pos>RCS_MAX_POS)
{
m_pos = RCS_MAX_POS;
}
else if (m_pos<RCS_MIN_POS)
{
m_pos = RCS_MIN_POS;
}
}
m_prevError = error;}

Next was the creation of a simple motor class. This would
communicate to the motor driver, which utilizes timer 1 on the
Arduino, to control the DC motors using a 20-kilohertz pulse-
width modulation.

class SimpleMotors
{
public:
// constructor (doesn't do anything)
SimpleMotors();
// enable/disable flipping of motors
static void flipLeftMotor(boolean flip);
static void flipRightMotor(boolean flip);
// set speed for left, right, or both motors
static void setLeftSpeed(int speed);
static void setRightSpeed(int speed);
static void setSpeeds(int leftSpeed, int rightSpeed);
private:
static inline void init()
{ static boolean initialized = false;
if (!initialized)
{ initialized = true;
init2();
}
}
// initializes timer1 for proper PWM generation
static void init2();
};
#define PWM_L 10
#define PWM_R 9
#define DIR_L 13
#define DIR_R 12
#if defined(__AVR_ATmega168__) ||
defined(__AVR_ATmega328P__) || defined
(__AVR_ATmega32U4__)
#define USE_20KHZ_PWM
#endif
static boolean flipLeft = false;
static boolean flipRight = false;

After the simple motor class was established, it was important to
create the reaction of the robot car to orient itself to face the
tracked block one PixyCam is normalized. This occurs once the
block begins changing proximity to the robot. Size is the area of
the object, and a running average of eight sizes are kept.

int32_t size = 400;
void FollowBlock(int trackedBlock)
{
int32_t followError = RCS_CENTER_POS -
panLoop.m_pos;
size += pixy.blocks[trackedBlock].width *
pixy.blocks[trackedBlock].height;
size -= size >> 3;
int forwardSpeed = constrain(400 - (size/256), -100,
400);
int32_t differential = (followError + (followError *
forwardSpeed))>>8;
int leftSpeed = constrain(forwardSpeed + differential,
-400, 400);
int rightSpeed = constrain(forwardSpeed - differential,
-400, 400);

30th Florida Conference on Recent Advances in Robotics, May 11-12-2017, Florida Atlantic University, Boca Raton, Florida

Forward speed will decrease as the robot approaches the object.
The steering differential is proportional to the error times the
forward speed, and this adjusts the left and right speeds.

if (k%50 ==0){
Serial.println("Speeds in follow");
Serial.println(rightSpeed);
Serial.println(leftSpeed);
}
motors.setLeftSpeed(leftSpeed);
motors.setRightSpeed(rightSpeed);
}

Another important prompt was to instruct the PixyCam to search
for blocks, by panning back and forth at random until a block with
the “correct” hue is detected, after which the following begins.

int scanIncrement = (RCS_MAX_POS -
RCS_MIN_POS) / 150;
uint32_t lastMove = 0;
void ScanForBlocks()
{
if (millis() - lastMove > 20)
{
lastMove = millis();
panLoop.m_pos += scanIncrement;
if ((panLoop.m_pos >=
RCS_MAX_POS)||(panLoop.m_pos <=
RCS_MIN_POS))
{
tiltLoop.m_pos = random(RCS_MAX_POS * 0.6,
RCS_MAX_POS);
scanIncrement = -scanIncrement;
if (scanIncrement < 0)
{
motors.setLeftSpeed(-250);
motors.setRightSpeed(250);
}
else
{
motors.setLeftSpeed(+180);
motors.setRightSpeed(-180);
}
delay(random(250, 500));
}
pixy.setServos(panLoop.m_pos, tiltLoop.m_pos);
}
}

The robot is intelligent enough to reverse when it is being
approached by the tracked object, and to not begin movement
until the tracked item changes in proximity to the robot. The
distance is measured by multiplying the height and width
variables that the PixyCam can measure.

void setup()
{Serial.begin(9600);
Serial.print("Starting...\n");
motors.setSpeeds(0, 0);
pixy.init(); }
uint32_t lastBlockTime = 0;

The main loop is included below. This runs continuously after
setup, which precedes the main loop and runs at startup.

void loop()
{
if (k%50 ==0)
Serial.println("Loop Started");
k++;
uint16_t blocks;
blocks = pixy.getBlocks();
// If we have blocks in sight, track and follow them
if (blocks)
{
if (k%50 ==0)
Serial.println("blocks in sight");
int trackedBlock = TrackBlock(blocks);
FollowBlock(trackedBlock);
lastBlockTime = millis();
}
else if (millis() - lastBlockTime > 100)
{
motors.setLeftSpeed(0);
motors.setRightSpeed(0);
ScanForBlocks();
}
}
int oldX, oldY, oldSignature;

6. EXPERIMENTATION
The robot was tested by setting it to track a red hat that the tester
would hold in front of it. The lighting conditions of the room were
optimal, with no natural daylight interference. The PixyCam is
not as functional when daylight is factored in, and as such, has
poorer outdoor performance. Nonetheless, the robot was tested
both inside at nighttime and outside with daylight.

7. RESULTS
Testing was successful in the indoor test, and the robot tracked
and followed the object for five minutes. The robot lost visual
sight of the hat once, due to the lighting conditions of the testing
room, but the panning back-and-forth code block restored the
visual sight to the hat, and the robot could continue following the
tester. The robot is calculated and expected to last up to thirty
minutes of continuous motion following. It was able to achieve a
maximum speed of four miles per hour.

The outdoor test proved difficult, with the red hat reflecting much
of the light and causing PixyCam to behave erratically. We were
able to remedy this issue, by programming the PixyCam with a
custom-made color signature, which comprised of a piece of
paper with three different unique and bright colors. The robot
functioned normally until subjected to direct contact with
sunlight, which interfered in the tracking. PixyCam should be
avoided from direct sunlight.

PixyCam’s lens is focused through screwing in/out, and as such
it is recommended to users to secure the lens in place once it is
set. We encountered multiple scenarios of the camera losing focus
due to a loose lens that was turning on its own due to the motion
of the moving robot.

30th Florida Conference on Recent Advances in Robotics, May 11-12-2017, Florida Atlantic University, Boca Raton, Florida

8. CONCLUSION
The concept of tracking a pattern by a platform has been
demonstrated in terms of a first prototype and encouraging results
have been observed. Application of this concept in industrial as
well as personal robotics offers a potentially wide spectrum of
new designs for robotic platforms and even manipulators.

In conclusion, we successfully built the color tracking rover
which would identify the programmed color and then follow the
path taken by the color. Further research can be carried out on
programming the rover to move irrespective of the light
conditions.

9. ACKNOWLEDGEMENTS
We would like to acknowledge Gene Yllanes for her assistance in
construction of the programming code.

10. REFERENCES
[1] Bhasin, Kim, and Patrick Clark. "How Amazon Triggered a

Robot Arms Race." Bloomberg Techology. Bloomberg, 16
June 2016. Web. 27 Apr. 2017.

[2] "CMUcam5 Pixy." Wiki - CMUcam5 Pixy - CMUcam:
Open Source Programmable Embedded Color Vision
Sensors, 2017.

[3] "Arduino UNO Rev3." Arduino Store USA. N.p., n.d.
Web. 27 Feb. 2017.

[4] Cade, D. L. "Pixy: A Low Cost Camera that Recognizes and
Follows bjects by Color." PetaPixel. N.p., 01 Sept. 2013.
Web. 27 Apr. 2017.

[5] Knight, Will. "An Italian scooter maker invents a robot that
follows you around carrying your stuff." MIT Technology
Review. MIT Technology Review, 07 Feb. 2017. Web. 27
Apr. 2017.

[6] "Adafruit Motor Shield V2 for Arduino." Using DC Motors |
Adafruit Motor Shield V2 for Arduino, Adafruit Learning
System. N.p., n.d. Web. 27 Apr. 2017.

[7] Product Details and Description. N.p.: n.p., n.d. Mantech.
Feetech, 2013. Web. 27 Apr. 2017.

[8] Team, Editorial. "Control a DC Motor with an Arduino." All
About Circuits. N.p., 07 July 2015. Web. 27 Apr. 2017.

[9] "Tutorial: Pixy (CMUcam5)." Physical Computing. IDeate,
n.d. Web. 27 Apr. 2017.

