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Abstract— In this paper, we will explore combining the
manipulation of a robotic arm and the mobility of a mobile
platform, both in theory and in hardware implementation.
First, the kinematic equations of the 7-DoF redundant robotic
arm and the 2-DoF non-holonomic mobile platform will be
introduced. Second, we will derive the Jacobian equations of
the robotic arm and the mobile platform. The two Jacobian
equations will be combined into one so we can accomplish
the end-effector guided control without the consideration of
controlling the mobile platform separately. Finally, we will
implement and test these algorithms both on the simulated and
physical Wheelchair-Mounted Robotic Arm (WMRA) system.
Comparison and analysis of the results will be presented, and
future improvements will be discussed.

Index Terms— Jacobians, Kinematics, Mobile manipulator,
Non-holonomic system, Redundant robotic arm, Wheelchair
Mounted Robotic Arm system(WMRAs).

I. INTRODUCTION
The 9-DoF wheelchair-mounted robotic arm (WMRA)

system consists of a 2-DoF non-holonomic mobile platform
and a 7-DoF redundant robotic arm, see Fig. 1. Applications
for this system can be used in assistant wheelchairs for
disabilities, industrial mobile manipulators and warehouse
storage robots. Unfortunately, most WMRAs have had lim-
ited commercial success due to poor usability. It is often
difficult to accomplish many of the Activities of Daily Living
(ADL) tasks with the WMRAs currently on the market
due to their physical and control limitations and its control
independence of the wheelchairs’ control system.

Fig. 1. Wheelchair-mounted robotic arm system.

Seraji uses the combined Jacobian matrices to solve a sim-
ple on-line approach for motion control of holonomic mobile
robots [1]. Lim and Seraji presented a real-time system which
controls the 7-DoF robotic arm and 1-DoF mobile platform
[2]. White evaluated the dynamic redundancy resolution in
a non-holonomic wheeled mobile manipulator [3]. Chen
presented an adaptive sliding mode backstepping control for
the mobile manipulator with non-holonomic constraints [4].

In this paper, we are going to introduce the WMRA
system which has the uniqueness in using the universal
two wheel driven non-holonomic mobile platform instead
of using the omni-directional mobile platform, which has a
difficulty overcoming the drifting problem. The uniqueness is
the integrated control algorithm of the two systems. We will
present how to model the mobile platform in which the arm
mounting position is offsetting both in X, Y and Z directions.
The combination with the 7-DoF redundant robotic arm will
be introduced.

It is desired to fulfill the need of such integrated systems
to be used for many ADL tasks, such as opening a spring-
loaded door autonomously and go through it, interactively
exchange objects with a companion on the move, avoid
obstacles by going around them while maneuvering ob-
jects, conveniently handle food and beverage between the
fridge, Microwave oven, stove, etc. without the need to
switch between the wheelchair controller and the robotic
arm controller, and avoid singularities in a small working
environment, such as an office, where wheelchair motion
can be slightly utilized to maneuver objects while avoiding
singularities (similar to a person sitting on an office chair and
handling objects around him by moving his/her arm while
slightly moving the chair to get closer to an object that is
otherwise unreachable).

II. KINEMATIC MODELING OF MOBILE MANIPULATORS

A. Kinematics of 7-DoF Redundant Robotic Arm

The robotic arm at hand consists of seven revolute joints
of which the rotation axes of every two immediate joints
intersect. Fig. 2 shows a Solid Works drawing of the new
robotic manipulator that was designed and built at the
University of South Florida [5]. For that manipulator, frame
assignment for each link is shown in Fig. 3, and the D-H
parameters are highlighted.

Fig. 2. Solid Works Model of the New 7-DoF Robotic Arm Built at USF.

1) The Homogeneous Transformation Matrices: The aim
of the forward kinematics is to solve the transformation
equations for the end-effector’s Cartesian position and orien-
tation or velocities when the joint angles and velocities are



Fig. 3. Frame Assignments and Dimensions of the 7-DoF Robotic Arm.

TABLE I
THE D-H PARAMETERS OF THE 7-DOF ROBOTIC ARM.

i αi−1 ai−1 di θi
1 -90 0 d1 θ1
2 90 0 d2 θ2
3 -90 0 d3 θ3
4 90 0 d4 θ4
5 -90 0 d5 θ5
6 90 0 d6 θ6
7 -90 0 d7 θ7

given. Homogeneous transformation matrices that transform
the motion from one coordinate frame reference to the other
can be easily obtained from the D-H parameters using the
conventional equations [6] that relate every two consecutive
frames to each other as follows:

i+1
i T =


Cθi −Sθi 0 ai−1

Sθi·Cαi−1 Cθi·Cαi−1 −Sαi−1 −Sαi−1· di
Sθi·Cαi−1 Cθi·Sαi−1 Cαi−1 Cαi−1· di

0 0 0 1


(1)

Where S is sine, and C is cosine of the angle. Propagating
these matrices from one frame to the other gives us the
forward kinematics of the robotic arm that describes the end-
effector’s frame based on the base frame as follows:

Armbase
End−effectorT = A

ET = 0
1T · 12T · 23T · 34T · 45T · 56T · 67T (2)

2) The Jacobian Matrices: We can compute the manipu-
lator Jacobian matrix by simply doing some manipulation of
Transformation matrix A

ET . Detailed steps please reference
Orin and Schrader’s efficient computation of the Jacobian
matrix for robot manipulator [7].

Ẋw.r.tA
E = JE · q̇A (3)

Where JE is the Jacobian matrix that relates the 7 joint
angular velocities to the end-effector’s Cartesian velocities
based on the arm base frame. At any time step, knowing the
joint velocities and joint angles allows us to translate directly
to the end-effector’s Cartesian velocities using the Jacobian
matrix. Ẋw.r.tA

E is the velocities of end-effector in Cartesian
space with respect to arm base frame.

B. Kinematics of 2-DoF Mobile Platform

If the controllable DoF is less than the total DoF in the
workspace, then the platform is said to be non-holonomic
[8]. Examples of non-holonomic platforms are cars, power
wheelchairs and other mobile platforms that can, at any

given moment, move in two dimensions out of the three
planar dimensions. The wheelchair used in this work is an
“Action Ranger X Storm Series” power wheelchair. This
wheelchair accomplishes its non-holonomic motion using
a differential drive that carries two independently-driven
wheels in the back of the power wheelchair. The front of
the wheelchair has two passive castors that are placed to
support the wheelchair’s motion. This makes the wheelchair
a 2-DoF system that moves in plane [9].

Three important points of interest were assigned on and
around this wheelchair, and coordinate frames were assigned
on these three points. These three frames are the wheelchair’s
coordinate frame assigned at the center of the driving wheels’
axle, the ground frame assigned at an arbitrary location
on the ground floor, and another frame called frame “A”
assigned at the point where the 7-DoF robotic arm will be
mounted. Fig. 4 shows two-dimensional top and side views
of the SolidWorks model of the wheelchair with the key
dimensions and the frame assignments.

Fig. 4. Mobile platform coordinate frames and dimensions of interest.

Where L1 is the distance between the centers of the two
driving wheels along the differential drive axle, L2 L3 L4

are the offset distances from the center of the differential
drive to the center of frame “A” along the wheelchair’s X-
axis, Y-axis and Z-axis respectively. And the L5 is the offset
distance from the center of the differential drive to the center
of the ground frame along the wheelchair’s Z-axis, which is
the same as the wheelchair’s driving wheels’ radius.

1) The Homogeneous Transformation Matrices: To trans-
form the wheelchair’s coordinate frame during motion, we
assume that the initial position and orientation of the frame is
known, and we need to find the new position and orientation
for the next time step. Let the initial coordinate frame of
the wheelchair be “W0” and the next coordinate frame after
moving one step is “W1” as shown in Fig. 5.



Fig. 5. Transformation of mobile platform frames.

Arc length =
∆Dl + ∆Dr

2
(4)

∆φ =
∆Dr −∆Dl

L1
(5)

R =
Arc length

∆φ
(6)

Where ∆Dl = L5 · dθl, ∆Dr = L5 · dθr. L5 is the radius of
the wheel. dθl and dθl are the rotational changes during this
time loop which can be obtained from the motor encoders.
So the transformation from the known coordinate “W0” to
the next time step “W1” would be:

W0

W1
T =


C∆φ −S∆φ 0 R·S∆φ
S∆φ C∆φ 0 R−R·C∆φ

0 0 1 0
0 0 0 1

 (7)

For the purpose of the robotic arm to be mounted on
the wheelchair, one more transformation is required between
the wheelchair’s coordinate frame and the robotic arm base
coordinate frame where it attaches to the wheelchair.

W1

A T =


1 0 0 L2

0 1 0 L3

0 0 1 L4

0 0 0 1

 (8)

If we assume that the initial coordinate frame of the
wheelchair “W0” was a result of previous transformation
from the origin “G” as illustrated in Fig. 4, the resulting
homogeneous transformation from the ground frame “G” to
the wheelchair’s initial frame “W0” can be expressed as:

G
W0
T =


Cφ −Sφ 0 P0x

Sφ Cφ 0 P0y

0 0 1 L5

0 0 0 1

 (9)

Where φ is the resultant turning angle from all previous steps
added together. The origion of W0 coordinate indicated by
P0x and P0y are the resultant positions from all previous
steps added together in global X and Y axes respectively .

Multiplying (9) (7) and (8) together results in the relation
between the ground coordinate frame “G” and the final
coordinate frame of the wheelchair “A” as follows:

G
AT = G

W0
T ·W0

W1
T ·W1

A T (10)

2) The General Jabocian Matrices: We can compute
the mobile base Jacobian by using velocity propagation
approach. For detailed steps please reference Alqasemi’s
maximizing manipulation capabilities of persons with dis-
abilities [10].

VA = JwhA · q̇wh, or (11)

[
ẊA
ẎA
φ̇A

]
=
L5

2

[
Cφ + 2

L1
(L2Sφ + L3Cφ) Cφ − 2

L1
(L2Sφ + L3Cφ)

Sφ − 2
L1

(L2Cφ − L3Sφ) Sφ + 2
L1

(L2Cφ − L3Sφ)

− 2
L1

2
L1

] [
θ̇l
θ̇r

]
(12)

Where JwhA is the Jacobian matrix that relates the wheels’
angular velocities to the arm base or arm mounting place
Cartesian velocities with respect to the global frame “G”.

The above equation will be used with the numerical
methods to produce the motion commanded by the user in
Cartesian coordinates after calculating the wheels’ velocities
required to realize the commanded motion. And it is a
universal Jacobian matrix that can be used in any 2-DoF
non-holonomic mobile system. For example, some platforms’
arm mounting place has no offset in X-axis; therefore, we
just need simply let L2 =0.

C. Kinematics of Integrated Mobile Manipulator

1) The Homogeneous Transformation Matrices:

G
ET = G

AT · AET (13)

Matrix G
ET represents the 4×4 homogeneous transformation

between the ground and the end-effector’s frame in terms of
the WMRA joint space.

2) The Jacobian Matrices: In order to combine the mo-
tion of the arm with the motion of the wheelchair, it is
important to modify the Jacobian matrix of wheelchair to
include all six Cartesian velocities in space. So the (12)
should be rewritten as:

VA
6D = JwhA

6D · q̇wh, or (14) Ẋ

Ẏ

Ż
ωx
ωy
ωz


A

=
L5

2


Cφ + 2

L1
(L2Sφ + L3Cφ) Cφ − 2

L1
(L2Sφ + L3Cφ)

Sφ − 2
L1

(L2Cφ − L3Sφ) Sφ + 2
L1

(L2Cφ − L3Sφ)

0 0
0 0
0 0

− 2
L1

2
L1

[θ̇l
θ̇r

]
(15)

Note that the Jacobian equation in (15) relates the wheels’
velocity vector to the Cartesian task space at the robotic arm
base frame, and what we need is the equivalent relationship
defined at the end-effector’s frame. This will be done to
the wheelchair’s motion by introducing a new Jacobian as
follows:

JE
A =

I2 [0]
−(PEx · Sφ+ PEy · Cφ)
PEx · Cφ− PEy · Sφ

[0] I4

 (16)



Where PEx and PEy are the x-y coordinates of the end-
effector based on the arm base frame which can be obtained
from the transformation matrix A

ET .
It is important to keep all the Jacobian matrices with

respect to the global coordinate “G”, so the Jacobian matrix
in the (20) should be rewritten as:

JE
G = G

AR6×6 · JE , or (17)

JE
G =

[
G
AR [0]
[0] G

AR

]
· JE (18)

Where the G
AR is the 3×3 rotation matrix which can be

obtained from G
AT .

Now the Jacobian equations are augmented separately and
ready for combination.

Ẋw.r.tG
E = JE

G · q̇A + JE
A · JwhA

6D · q̇wh , or (19)


Ẋ

Ẏ

Ż
ωx

ωy

ωz


E

=
[
JE

G JE
A · JwhA

6D
]
6×9
·



θ̇1
θ̇2
θ̇3
θ̇4
θ̇5
θ̇6
θ̇7
θ̇l
θ̇r


9×1

, or (20)

Ẋw.r.tG
E = JE

G · q̇ (21)

where JE
G =

[
JE

G JE
A · JwhA

6D
]
, which is the final

combined Jacobian matrix that relates all the 9 joint angular
velocities to the end-effector’s Cartesian velocities based on
the global frame “G”.

III. HARDWARE IMPLEMENTATION

A. Hardware design

For the mobile platform, we modified a universal motor
powered wheelchair. The arm mounting system was added
to the left side of the wheelchair, and the controller box
was added to the back side of the wheelchair. The two
motors of the wheelchair were modified with two 1000
pulses/revolution incremental encoders, see Fig.6. We chose

Fig. 6. Important hardware parts.

the Galil DMC-41x3 series motor controller to drive these
two wheels, which allows for 4-axis 750W drives, since each
motor of the wheelchair has a typical power consumption of
350W. The control board interfaces to a PC with Ethernet

10/100BASE-T which supports TCP/IP or UDP for commu-
nication. For the robotic arm, which has 7 servo motor driven
joints, each motor was equipped with incremental encoder.
The controller is Galil DMC-21x3 series, which allows 8-
axis 500W drives in total. The controller board interfaces
to a PC with Ethernet 10Base-T which supports TCP/IP or
UDP for communication.

B. Software structure

The communication between Matlab program and the
Galil controller board was designed to use Matlab
socket(TCP/IP). All algorithms were programmed in the
Matlab environment, where the output of the program is the
velocity vector of the 9 joints which are sent to the Galil
board at each loop. The input of this program is a vector of
the current joint angles read from the Galil motor controller
at each loop in encoder counts. Fig.7 shows a flowchart of
the algorithm to help with understanding how these equations
and variables are used in the actual program.

Initialization:
qA = [0 · · · 0]T 7×1,
θl = θr = 0, θoldl =
θoldr = 0, φ = 0,

∆φ = 0, P0x = P0y = 0

qA ⇒ JE
G (20),AET (2);

A
ET ⇒ Pex, Pey ⇒ JE

A (16);
φ ⇒ JwhA(15);

P0x, P0y, φ,∆φ, dθl, dθr ⇒ G
AT (10) ⇒ G

AR;
⇒ JE

G(18) ⇒ JE
G (20)

ẊE =
(Xdesired

E −XE)·Kp

−ẊE · Kd;

q̇ = JE
G

+ · ẊE ;
q̇(rad/s) ⇒ q̇(count/s)

Motor Controller (9 channels)

q(count) ⇒ q(rad);
dθl = θl − θoldl , dθr = θr − θoldr ;

θoldl = θl, θ
old
r = θr;

dθl, dθr ⇒ (4)(5)(6)(7)(8)(9)(10)(13)
⇒ Updated ∆φ, P0x, P0y, XE ;

φ = φ + ∆φ

send q̇ to

read actual q

Fig. 7. Control flow diagram.



IV. EXPERIMENT AND RESULTS

We designed two tests to verify this algorithm. The first
one is commanding the end-effector to follow a straight path
at a certain speed. The second one is commanding the end-
effector to follow a sinusoidal trajectory.

In the first test, the desired end-effector’s trajectory was
generated as a linear trajectory as follows:

Xdesired
E =


90t
0
0
0
0
0

+XInitial
E

where XInitial
E is the initial position(in mm) and orienta-

tion(in rad) of the end-effector.

Fig. 8. Following the straight trajectory.

The end-effector’s trajectory for the second test was gen-
erated as a sinusoidal trajectory as follows:

Xdesired
E =


90 · t

1000 · sin(0.1 · t)
0
0
0
0

+XInitial
E

Fig. 9. Following the sinusoidal trajectory.

Fig. 8 and Fig. 9 present the real-time plotting of the
operation of the mobile manipulator. The collected data from
the 9 encoders based on the feedback from the controller
board in real-time(around 100Hz) were used in Matlab
algorithm to generate the motion of the physical hardware, as
presented in Fig. 8 and Fig. 9. Then the data was sent to the
forward kinematic equations to get the Cartesian positions

and orientations of each joint (for detailed steps please see
Fig. 7).

Fig. 10. Panorama picture of test 1 (Top view).

Fig. 10 shows a panoramic view of the test setup from the
top view of the first test. We can see a tape measure in the
image, which plays the role of the end-effector’s trajectory.
The landmarks(0mm, 1000mm,...,5000mm) in the picture
represent the ticks of the trajectory. This setup will help with
verifying that the Matlab algorithm is correctly plotting the
position of the mobile robot in the real world.

V. CONCLUSIONS

In this paper, we presented a generalized mobile ma-
nipulator system which includes a 2-DoF non-holonomic
mobile platform and a 7-DoF redundant robotic manipulator.
The arm mounting position is offsetting from the center
of the driving shaft in X,Y and Z axes. So, the kinematic
and Jacobian equations derived here are universal form that
can be applied to any situation of non-holonomic mobile
platforms. We first introduced the kinematic and Jacobian
equations of the manipulator and the mobile platform in-
dependently, then we adjusted the Jacobian equation of the
robotic arm so that the motion of the end-effector will be
relative to global frame. Finally, the two Jacobian equations
were combined into one; by this way, the end-effector of the
mobile manipulator can be easily navigated by the trajectory
generated in the global frame. In the hardware testing, the
control diagram was introduced in order to give detailed
programming steps so that people can easily repeat this
experiment. We verified this algorithm on the Wheelchair
mounted robotic arm system(WMRAs) built at USF. From
the two experiments, we can see that the mobile manipulator
can be used to follow the user commanded trajectories. The
kinematics modeling is valid and the control algorithm is
correct. This algorithm is applicable for any end-effector
based application. For example, surface processing (sanding,
coating removal, or painting) of large systems such as aircraft
or ships.

VI. FUTURE WORK

Since the mobile platform trajectory is undefined and
unknown when the program is running, this may not be
desirable for operating in a constrained space. Thus, we are
going to introduce a safety motion band for the mobile plat-
form in order to limit the mobile platform moving from the
outside of a specific area(safety band) while keeping the end-
effector following its own trajectory. The differences between



assigning a specific trajectory for the mobile platform and the
safety band concept are as follows:

• Generating the trajectory for mobile platform may not
be necessary, since the mobile platform usually has its
own safety working range. We can free the motion of
the mobile platform as long as it remains in its safety
working range.

• Freeing the mobile platform motion instead of keep-
ing specific trajectory will produce more redun-
dancy(usually 2-DoF) for the whole system, so we can
use this extra redundancy to optimize algorithms, such
as maximizing manipulability of the robotic arm on the
mobile manipulator or avoiding the joint limits.
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