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ABSTRACT 
This paper contains the methods used by students of Florida 
International University to optimize an autonomous robotic code 
to ensure the maximum amount of resource retrieval. Specifically, 
this paper deals with the ROS operating system and how each of 
the robot’s components can most effectively communicate with 
each other as well as streamlining communications between 
robots. The process was carried out by analyzing various portions 
of the code to obtain marginal increases in performance. This 
resulted in a faster and more effective overall search and retrieval 
functioning of the swarm robots. 
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I. INTRODUCTION
To make advancements in the field of space exploration using 
cooperative robotics, the National Aeronautics and Space 
administration (NASA) has launched the second annual 
Swarmathon. It is a competition in which universities nationwide 
are challenged to use a set of autonomous rovers to explore and 
collect resources randomly distributed in a large area with 
possible obstacles. This collaboration allows much quicker 
resource retrieval rates, ultimately increasing the opportunity for 
large scale exploration. The competition simulates exploration of 
an unknown area where humans either cannot reach or cannot 
survive. It requires each team to develop a unique search 
algorithm for the rovers to assess the area and collect possible 
useful resources. For the competition’s preliminary stages, teams 
are allowed three robots to search the area for resources which are 
represented by April Tags placed on cubes. Because the location 
of the cubes is unknown, the robots must work together to gather 
the most possible resources in the least amount of time. Robots 
are tasked to autonomously scan the area and utilize the onboard 
camera to detect these tags and a sonar detection systems to detect 
upcoming obstacles in the robot’s path. A claw is then used to 
pick up the tag and return it to a central collection area in the 
quickest possible manner. 

1.1 The Robot 
Designed and provided by the Moses Biological Computation 
Lab at the University of New Mexico, the rovers, or Swarmies, 
are small robotic vehicles measuring approximately 30 cm x 20 
cm x 20 cm. [1] As seen in figure 1 below, they are equipped with 
claws for the collection of resources. They also include ultrasound 
distance sensors, a webcam, a WiFi antenna, and a GPS system 
to allow the robot to navigate, search for the cubes, and locate the 
base area.  

Figure 1. Swarmie 2017 with an Added Claw Feature to 
Collect the Resources [1] 

1.2 Robot Operating System 
Inspired by the biological conduct of group functioning insects 
such as ants and termites, swarm robots utilize algorithms that 
adjust these behaviors into error tolerant, scalable, and flexible 
robot foraging strategies in varied and complex conditions. [1] 
Since the robots’ hardware cannot be changed, the optimization 
of resource collection must be carried out through manipulation 
of the code. The robots rely on the Robot Operating System 
(ROS) to operate and execute all the independent functions of the 



robots. The purpose of the ROS operating system is essentially to 
compartmentalize the various tasks to be completed by the robots. 
These tasks are known as packages which control different 
components of the robot. ROS also allows for the packages to 
communicate with each other using libraries known as ‘topics’. 
These topics store information that is published to them from 
packages. Then, a package can subscribe to the topic to receive 
information from said topic. Each of the robot’s functions are 
separated into their own code but rely on ROS to communicate 
the information from package to package. For instance, in case 
one of the robot’s sensors detects an obstacle, this is 
communicated to the mobility package, in charge of the robots’ 
movement, which then uses this information to avoid the obstacle. 
Editing these packages allows the robot to operate using different 
logic. The logic used in the packages determines the efficiency at 
which the robot operates.  

1.3 Project Overview 
Taking advantage of ROS’s compartmentalization is key to 
optimizing the search for resources. Because all tasks are 
compartmentalized into packages, these packages can function 
independently of each other. Optimizing ROS and editing the 
packages, written in C++, can have a beneficial effect on the 
performance of the search algorithm of the robots. It is important 
to streamline the exchange of information between packages as 
well as between robots. This streamlining process is carried out 
by editing the topics that the packages publish and subscribe to. 
Ideally, there is a minimum number of topics that should be used 
by packages in the operating system. Finding a balance between 
reliability and time efficiency will be key to successfully 
competing in NASA’s Swarmathon competition.  

 In summary, this work makes the following contributions: (1) 
optimize the code for a more efficient performance of the robot; 
(2) locate useful sensor data and compile it into a single location 
for ease of use; and (3) improve resource retrieval rate by ensuring 
precise positional awareness, proper object identification, and 
successful communication. 

II. LITERATURE SURVEY  
Autonomous robots can be used to explore a variety of unfamiliar 
environments. Information can be obtained depending on the 
functions and components of the robot. These robots are 
necessary in exploring areas that cannot be accessed by humans, 
such as caves, deep oceans, and even other planets. NASA  

Figure 2. Spirit MER-A Rover 

developed two rovers for exploration on Mars. One of the rovers, 
named Spirit, was launched from Cape Canaveral in 2003. 
Unfortunately, the rover ceased mobility after entering soft soil. 
Data was still collected for about a year from the stationary 
position; however, the rover was determined to be irrecoverable. 
In 2010, the rover ceased communication and the mission was 
declared complete. Figure 2 shows the rover being tested inside a 
lab at NASA. 

One month later, NASA launched a second rover which has 
experienced a much higher level of success. The second rover, 
named Opportunity, can be found below in Figure 3. The rover 
has been exploring mars since January of 2004 and is currently 
still functioning to share data with scientists and engineers on 
Earth. The rover has traveled about 24 miles and has proven to be 
very effective. Although the rover has accomplished much, the 
use of multiple robots can accelerate the rate of exploration and 
significantly increase the amount of area covered.  
  

	
Figure 3. Opportunity MER-B Rover 

Swarm robots have proved to be a more efficient and inexpensive 
alternative to solitary space robots for In-situ resource utilization 
(ISRU) efforts.  For instance, “20 Swarmies can travel and search 
42 km of linear distance in 8 hours without recharging which is 
the distance covered in a marathon and the same distance traveled 
by the Mars exploration Rover Opportunity in 11 years.” [1] This 
is largely due to the cooperative aspect of their foraging 
algorithm. Though inexpensive, they are more robust, flexible, 
and scalable than monolithic robots operating alone. [1] 

This project builds on important prior works done by the FIU 
Panther Swarm Team for the first annual NASA Swarmathon. 
The first design of the Swarmie included sensors, a camera, a GPS 
system, and a Wi-Fi antenna to communicate. The robots would 
scan an area in search of tags which represent a resource or object. 
After observing a tag, the robot would return then to a central 
location to virtually deliver the “resource.”   A search algorithm 
that relies heavily on the compass and ultrasound data was vital 
for the robot to keep track of the nest position. To allow the rovers 
to successfully collect and return the tags, four main mode were 
implemented. As shown in figure 4, they are broken down as 
runway (green), position (blue), sweep (orange), and return (red) 
[2]. “The runway is an east to west path along the x-axis that 
passes through the nest. The position mode assigns a y-coordinate 
value to the rover and has the rover either moving north or south 
to get to the desired y-coordinate. The sweep mode is a west to 
east path that has the rover looking for tags as it moves back 
across the arena. The return mode has the rover moving north or 



south to return back to the x-axis so that it can go back to the 
runway mode.” [2] However, the algorithm was not proved to be 
successful during the physical testing because it made use of the 
“sonar reading in conjunction with the walls to track and reset the 
positional data of the rover.” [2]  
 

	
Figure 4. Diagram of Search Algorithm used for NASA's 

Swarmathon Competition 2016 [2] 

The robots used in this competition implement the ROS operating 
system. This system allows for the compartmentalization of the 
various tasks the robot must perform. The robots various task, like 
moving and detecting tags for example, will all have individual 
codes that are then compiled through ROS and can function 
independently of each other. To perform all tasks correctly and in 
a timely manner however, the individual codes, known as 
packages, must be able to communicate between each other and 
between the robots. This communication is carried out through a 
messaging system comprising of topics that can be published to 
or subscribed to. [6] These topics work as a message board where 
pertinent information is published for all packages to use. The 
mobility package, for example, is responsible for the movements 
and exploration of the robot and depends on the obstacle detection 
package to alert it of possible obstacles in the robots path. The 
mobility package then uses this information to take the necessary 
steps to avoid a collision. For this scenario, the obstacle detection 
package will detect an obstacle and publish this information to the 
pertinent topic. The mobility package, who is subscribed to this 
same topic, notices that there is an obstacle and avoids it. It is in 
this same manner that all packages communicate to allow the 
robot to function effectively.  

When the code has been compiled and the robot is operational it 
is important to verify that the code is working in the manner it 
was designed to. For this, Gazebo is used to simulate the 
competition. The Gazebo simulator allows the user to simulate 
both stages of competition with options for 3 robots or 6 as well 
as variable field sizes. The simulator also has options for 
changing the distribution of tags dispersed throughout the 
competition field. These simulations are crucial for understanding 
how the code will function during competition and how to make 
adjustments to optimize the robots’ functioning. It is also 
important to experiment with the introduced error in simulation. 

The larger the error the more faithful to the real world the 
simulation will be so experimenting with this variable can be very 
beneficial for competition. It is also possible to adjust the speed 
of the simulation. This is a very useful tool because you can 
increase the number of simulations carried out in each time 
period. Simulations however are no substitute for a real-life test. 
These tests will help to finalize the code and ensure that it works 
as desired. 
 

III. MOBILITY OPTIMIZATION 
The optimization process was carried out with the intent to 
increase performance without significantly altering the code. 
Various aspects of the program such as obstacle detection and 
mobility were critically analyzed to determine the most efficient 
method in which the swarm robots can explore the unfamiliar 
environment. [5] Marginal improvements in different algorithms 
within the program established faster overall functionality which 
in turn results in a quicker resource retrieval rate. 

The search method implemented for the code is a preset pattern 
in which the swarm robots move in 1 meter increments in the X 
direction and then after in the Y direction. A representation of this 
search is shown in Figure 5, which also displays the competition 
area. This pattern allows for the rovers to quickly return to home 
base after locating a resource. After each step, the rover completes 
a 360 degree scan in search of the tags. If one of the tags are 
located, the robot will collect the tag using a mechanical claw. 
The swarmie will then return to the home location in one motion 
which will sum the displacement in the X direction and Y 
direction to create a single step. There are tradeoffs when 
designing a search pattern. This structured code will cover the 
entire area, but unfortunately, a raking pattern will increase the 
time it takes to complete scanning the area [3].  

 

Figure 5. Diagram of Incremental Search Pattern 

Originally, the code called for the rover to orient itself using local 
positioning and a compass; however, a preset command proved 
to be much more effective. When the swarm robot then returns to 
search again, rather than trying to determine which direction it is 
facing, it will rotate 180 degrees and then proceed to search. It 
will follow the same initial path without stopping to scan areas 
that have already been covered. Once the swarmie reaches an 
unexplored location, it will then continue to scan and proceed in 



1 meter increments until another tag is located. A diagram of the 
search pattern can be found below.  

IV. OBJECT DETECTION 
Due to the frequent collisions experienced by the swarm robots, 
it was necessary to focus on improving the robots’ response to 
walls and other swarm robots. The code initially prompted 0.2 
radian (~11.45 degree) turning increments when an object was 
detected by the ultrasound sensors. This turning increment was 
increased to 1.57 radians (90 degrees) to decrease the time it takes 
the rover to return to its search for resources or tags. This change 
within the code is show in Figure 6. Utilizing 90 and 180 degree 
turns proved to be very effective because they complement the 
square, stepping motion of the search pattern.  
  

	
Figure 6. Obstacle Avoidance Algorithm Improvement 

A goal of proper object identification by distinguishing the 
difference between robots and walls was not achieved. Due to the 
sensors being placed on the same axis, the robot is unable to 
distinguish between objects based on height. To compensate for 
this, future experimentation and competition could implement 
modular sensor placement. This would provide the ability to place 
one or multiple sensors on a higher or lower axis. This would 
allow for one of the sensors to pass over any rover but not a wall. 
Distinguishing between a robot and wall is important because the 
response of a rover may not be the same for both. Optimizing the 
response based on which object is interfering with the robot’s 
motion could result in a decreased search time. For example, if 
both swarm robots approach each other and turn 90 degrees to the 
left and right when facing each other, a large portion of the grid 
may go unexplored for some time. 

 
V. VARIABLE ANALYSIS 
The goal of this section was to make the sensor data easy to 
manipulate and store. To accomplish this, the data must be 
organized into an array format which updates at regular intervals 
or continuously. These arrays can then be exported to a text file 
where they can be saved as a matrix for further analysis. A 
theoretical array containing the desired raw data is shown in 
Equation.1 below.  Table 1 contains the definitions for the data 
stored in the array along with information concerning the 
variables name, location, and how it's generated. After searching 
the code it was observed that locating the source of the data was 
much more difficult than observing where it was used. Due to this 
it is assumed to be easier to extract the sensor data from the 
current variable locations by publishing the data straight out of 
the .cpp files. 

(R#, T, CC, X, Y, θ, S1, S2, S3) 
 

Table 1. Identified Sensor Data 

 
 
Differing from the Sensor data is the Robot number (R#), a value 
used to identify data generated by a specific robot. According to 
previous Swarmathon competitors there does not exist a way 
differentiate the robots without pulling the IP address, which is 
not allowed. Due to this a method is being developed to assign a 
ranking to each robot which would serve as an identification 
number. While the communication of the data has not been 
worked out the logic portion of the code is currently under 
development. To distinguish the robots each shall generate a 
random number, save the variable, and proceed publish the result 
to the message board. All of the robots would be subscribed to 
this data and receive an array of random variables when the 
announcing process is completed. The robots would then compare 
their individual saved values with the list and determine their 
rankings correspondingly. The robot with the largest number will 
assign itself the number “1”and subsequently each robot will 
number itself depending on the “rank” of their number. If two 
randomly generated numbers are identical the robots will be 
directed to generate a fresh set of random numbers and begin the 
comparison process again. This data can theoretically be used for 
robot specialization and task delegation, however its primary 
function will be allowing operators and the robots themselves 
distinguish individual robot data from the memory matrix. 

Table 2. Description of State_Machine States in Mobility.cpp 

	
 

 



To obtain sensor data we began by looking into the 
“mobility.cpp” file as this code can be considered the main 
program for the swarm robots. After analyzing the code the base 
behavior of the swarm bots was identified. The robots operate on 
5 basic modes called “State_Machines” where the variables 
dictate which mode (specified behavior) to follow.  

Within this file the usage of multiple desired data points was 
discovered, these being X-position, y-position, and orientation. 
The default swarm program uses these variables to direct its 
movement. By polling its current position (Point A) and setting a 
goal (point B) the robot determines two points on the coordinate 
plane. The robot then performs some simple trigonometry to find 
the angle of the line connecting the two points. By reading its 
current orientation the robot determines whether it needs to rotate 
to match its orientation to the direction of the goal. Once the 
deviation in angles falls below a certain threshold the robot breaks 
out of the aligning program and enters the driving program where 
it heads to the destination at a fixed velocity. As long as the angle 
remains below the threshold the robot will not break into the 
aligning program, but instead use minor adjustments to maintain 
on course. 

 

	
Figure 7. Swarm Bot Alignment Geometry. (Credit David 

Heffernan) 

The next piece of code reviewed was the “Obstacle.cpp” file. The 
code operates by subscribing to data generated by the sonar 
sensors, analyzing it, and determining an operating state. By 
checking which sonar’s are detecting obstacles it specifies one of 
four obstacle modes as the current state for the robot. Once the 
correct mode has been determined (See Table 3) the data is 
published and used by the “mobility.cpp” program. . The format 
in which data is published follows the format 
“obstaclePublish.publish(obstacleMode)” while “Obstacle.cpp” 
operates is that it takes in sonar data then analyzes it to make a 
decision between four states. It then publishes the corresponding 
state to be used by other programs. The format in which data is 
published appears to be as follows. 

“obstaclePublish.publish(obstacleMode)”.  

To subscribe to the data, “mobility.cpp” first announces  

“ros::Subscriber obstacleSubscriber;”  

And then later in the code appears to set a variable equal to the 
subscribed data. 

“obstacleSubscriber = 
mNH.subscribe((publishedName + "/obstacle"), 10, 
obstacleHandler);” 

 
	

Table 3. Description of Obstacle Modes in 
Obstacle.cpp 

 

“Obstacle.cpp” operates is that it takes in sonar data then 
analyzes it to make a decision between four states. It then 
publishes the corresponding state to be used by other programs. 
The format in which data is published appears to be as follows. 

“obstaclePublish.publish(obstacleMode)”.  

To subscribe to the data, “mobility.cpp” first announces  

“ros::Subscriber obstacleSubscriber;”  

And then later in the code appears to set a variable equal to the 
subscribed data. 

“obstacleSubscriber = 
mNH.subscribe((publishedName + "/obstacle"), 10, 
obstacleHandler);” 

 
VI. CONCLUSION 
It was necessary to compare various search patterns to determine 
which would be the most effective. Although the rake covered the 
entire area, it was important to experiment with a spiral and 
stepping search pattern to determine which would cover the most 
area in the shortest period of time. This would allow for the 
maximum number of theoretical resources retrieved by the 
autonomous swarm robots. 
 

 
Figure 8. Spiral Search Simulation 



The spiral method (shown in figure 8 and 9) proved to be effective 
in scanning the area; however, it was very difficult to orient the 
robots. Due to noise and low accuracy GPS tracking, the robots 
would often misalign themselves making it difficult to return to 
the goal zone. Using higher quality sensors and hardware could 
provide much higher performance and programmability.  

 

	
Figure 9. Map Readout of a Spiral Search Simulation 

Figure 10.  Simulation Result of One of the Zone's Pathing 
with the Little Circles Representing the 360 Sweep at Each 

Space 

 

A more structured search method would then be created to 
eliminate any errors associated with the robots ability to position 
itself. A chessboard pattern was implemented to allow for the 
rover to return home after collecting resources by summing the 
steps it has moved away from home base. The 1 meter increments 
would allow for the area to be divided up into simple sections for 
the rovers to explore. After each step, the rover would complete a 
360 degree scan and continue searching for resources. Figure 10 
displays is an image of the simulated path. 
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