
Performance Optimization of Swarm Algorithm and
Sensor Data for NASA Swarmathon Competition

Juan Aguilar, Ann Blanchard, Adam Sibiski, Jason Soto, Scott Jagolinzer, Sabri Tosunoglu

Department of Mechanical and Materials Engineering
Florida International University

10555 W Flagler St
Miami, FL 33174

jagui080@fiu.edu, ablan115@fiu.edu, asibi003@fiu.edu, jsoto103@fiu.edu, sjago001@fiu.edu, tosun@fiu.edu

ABSTRACT
This paper contains the methods used by students of Florida
International University to optimize an autonomous robotic code
to ensure the maximum amount of resource retrieval. Specifically,
this paper deals with the ROS operating system and how each of
the robot’s components can most effectively communicate with
each other as well as streamlining communications between
robots. The process was carried out by analyzing various portions
of the code to obtain marginal increases in performance. This
resulted in a faster and more effective overall search and retrieval
functioning of the swarm robots.

Keywords
Swarm Robots, Swarmathon, Robot Operating System,
Performance Optimization, Sensor Data, Accuracy, Algorithm.

I. INTRODUCTION
To make advancements in the field of space exploration using
cooperative robotics, the National Aeronautics and Space
administration (NASA) has launched the second annual
Swarmathon. It is a competition in which universities nationwide
are challenged to use a set of autonomous rovers to explore and
collect resources randomly distributed in a large area with
possible obstacles. This collaboration allows much quicker
resource retrieval rates, ultimately increasing the opportunity for
large scale exploration. The competition simulates exploration of
an unknown area where humans either cannot reach or cannot
survive. It requires each team to develop a unique search
algorithm for the rovers to assess the area and collect possible
useful resources. For the competition’s preliminary stages, teams
are allowed three robots to search the area for resources which are
represented by April Tags placed on cubes. Because the location
of the cubes is unknown, the robots must work together to gather
the most possible resources in the least amount of time. Robots
are tasked to autonomously scan the area and utilize the onboard
camera to detect these tags and a sonar detection systems to detect
upcoming obstacles in the robot’s path. A claw is then used to
pick up the tag and return it to a central collection area in the
quickest possible manner.

1.1 The Robot
Designed and provided by the Moses Biological Computation
Lab at the University of New Mexico, the rovers, or Swarmies,
are small robotic vehicles measuring approximately 30 cm x 20
cm x 20 cm. [1] As seen in figure 1 below, they are equipped with
claws for the collection of resources. They also include ultrasound
distance sensors, a webcam, a WiFi antenna, and a GPS system
to allow the robot to navigate, search for the cubes, and locate the
base area.

Figure 1. Swarmie 2017 with an Added Claw Feature to
Collect the Resources [1]

1.2 Robot Operating System
Inspired by the biological conduct of group functioning insects
such as ants and termites, swarm robots utilize algorithms that
adjust these behaviors into error tolerant, scalable, and flexible
robot foraging strategies in varied and complex conditions. [1]
Since the robots’ hardware cannot be changed, the optimization
of resource collection must be carried out through manipulation
of the code. The robots rely on the Robot Operating System
(ROS) to operate and execute all the independent functions of the

robots. The purpose of the ROS operating system is essentially to
compartmentalize the various tasks to be completed by the robots.
These tasks are known as packages which control different
components of the robot. ROS also allows for the packages to
communicate with each other using libraries known as ‘topics’.
These topics store information that is published to them from
packages. Then, a package can subscribe to the topic to receive
information from said topic. Each of the robot’s functions are
separated into their own code but rely on ROS to communicate
the information from package to package. For instance, in case
one of the robot’s sensors detects an obstacle, this is
communicated to the mobility package, in charge of the robots’
movement, which then uses this information to avoid the obstacle.
Editing these packages allows the robot to operate using different
logic. The logic used in the packages determines the efficiency at
which the robot operates.

1.3 Project Overview
Taking advantage of ROS’s compartmentalization is key to
optimizing the search for resources. Because all tasks are
compartmentalized into packages, these packages can function
independently of each other. Optimizing ROS and editing the
packages, written in C++, can have a beneficial effect on the
performance of the search algorithm of the robots. It is important
to streamline the exchange of information between packages as
well as between robots. This streamlining process is carried out
by editing the topics that the packages publish and subscribe to.
Ideally, there is a minimum number of topics that should be used
by packages in the operating system. Finding a balance between
reliability and time efficiency will be key to successfully
competing in NASA’s Swarmathon competition.

 In summary, this work makes the following contributions: (1)
optimize the code for a more efficient performance of the robot;
(2) locate useful sensor data and compile it into a single location
for ease of use; and (3) improve resource retrieval rate by ensuring
precise positional awareness, proper object identification, and
successful communication.

II. LITERATURE SURVEY
Autonomous robots can be used to explore a variety of unfamiliar
environments. Information can be obtained depending on the
functions and components of the robot. These robots are
necessary in exploring areas that cannot be accessed by humans,
such as caves, deep oceans, and even other planets. NASA

Figure 2. Spirit MER-A Rover

developed two rovers for exploration on Mars. One of the rovers,
named Spirit, was launched from Cape Canaveral in 2003.
Unfortunately, the rover ceased mobility after entering soft soil.
Data was still collected for about a year from the stationary
position; however, the rover was determined to be irrecoverable.
In 2010, the rover ceased communication and the mission was
declared complete. Figure 2 shows the rover being tested inside a
lab at NASA.

One month later, NASA launched a second rover which has
experienced a much higher level of success. The second rover,
named Opportunity, can be found below in Figure 3. The rover
has been exploring mars since January of 2004 and is currently
still functioning to share data with scientists and engineers on
Earth. The rover has traveled about 24 miles and has proven to be
very effective. Although the rover has accomplished much, the
use of multiple robots can accelerate the rate of exploration and
significantly increase the amount of area covered.

	
Figure 3. Opportunity MER-B Rover

Swarm robots have proved to be a more efficient and inexpensive
alternative to solitary space robots for In-situ resource utilization
(ISRU) efforts. For instance, “20 Swarmies can travel and search
42 km of linear distance in 8 hours without recharging which is
the distance covered in a marathon and the same distance traveled
by the Mars exploration Rover Opportunity in 11 years.” [1] This
is largely due to the cooperative aspect of their foraging
algorithm. Though inexpensive, they are more robust, flexible,
and scalable than monolithic robots operating alone. [1]

This project builds on important prior works done by the FIU
Panther Swarm Team for the first annual NASA Swarmathon.
The first design of the Swarmie included sensors, a camera, a GPS
system, and a Wi-Fi antenna to communicate. The robots would
scan an area in search of tags which represent a resource or object.
After observing a tag, the robot would return then to a central
location to virtually deliver the “resource.” A search algorithm
that relies heavily on the compass and ultrasound data was vital
for the robot to keep track of the nest position. To allow the rovers
to successfully collect and return the tags, four main mode were
implemented. As shown in figure 4, they are broken down as
runway (green), position (blue), sweep (orange), and return (red)
[2]. “The runway is an east to west path along the x-axis that
passes through the nest. The position mode assigns a y-coordinate
value to the rover and has the rover either moving north or south
to get to the desired y-coordinate. The sweep mode is a west to
east path that has the rover looking for tags as it moves back
across the arena. The return mode has the rover moving north or

south to return back to the x-axis so that it can go back to the
runway mode.” [2] However, the algorithm was not proved to be
successful during the physical testing because it made use of the
“sonar reading in conjunction with the walls to track and reset the
positional data of the rover.” [2]

	
Figure 4. Diagram of Search Algorithm used for NASA's

Swarmathon Competition 2016 [2]

The robots used in this competition implement the ROS operating
system. This system allows for the compartmentalization of the
various tasks the robot must perform. The robots various task, like
moving and detecting tags for example, will all have individual
codes that are then compiled through ROS and can function
independently of each other. To perform all tasks correctly and in
a timely manner however, the individual codes, known as
packages, must be able to communicate between each other and
between the robots. This communication is carried out through a
messaging system comprising of topics that can be published to
or subscribed to. [6] These topics work as a message board where
pertinent information is published for all packages to use. The
mobility package, for example, is responsible for the movements
and exploration of the robot and depends on the obstacle detection
package to alert it of possible obstacles in the robots path. The
mobility package then uses this information to take the necessary
steps to avoid a collision. For this scenario, the obstacle detection
package will detect an obstacle and publish this information to the
pertinent topic. The mobility package, who is subscribed to this
same topic, notices that there is an obstacle and avoids it. It is in
this same manner that all packages communicate to allow the
robot to function effectively.

When the code has been compiled and the robot is operational it
is important to verify that the code is working in the manner it
was designed to. For this, Gazebo is used to simulate the
competition. The Gazebo simulator allows the user to simulate
both stages of competition with options for 3 robots or 6 as well
as variable field sizes. The simulator also has options for
changing the distribution of tags dispersed throughout the
competition field. These simulations are crucial for understanding
how the code will function during competition and how to make
adjustments to optimize the robots’ functioning. It is also
important to experiment with the introduced error in simulation.

The larger the error the more faithful to the real world the
simulation will be so experimenting with this variable can be very
beneficial for competition. It is also possible to adjust the speed
of the simulation. This is a very useful tool because you can
increase the number of simulations carried out in each time
period. Simulations however are no substitute for a real-life test.
These tests will help to finalize the code and ensure that it works
as desired.

III. MOBILITY OPTIMIZATION
The optimization process was carried out with the intent to
increase performance without significantly altering the code.
Various aspects of the program such as obstacle detection and
mobility were critically analyzed to determine the most efficient
method in which the swarm robots can explore the unfamiliar
environment. [5] Marginal improvements in different algorithms
within the program established faster overall functionality which
in turn results in a quicker resource retrieval rate.

The search method implemented for the code is a preset pattern
in which the swarm robots move in 1 meter increments in the X
direction and then after in the Y direction. A representation of this
search is shown in Figure 5, which also displays the competition
area. This pattern allows for the rovers to quickly return to home
base after locating a resource. After each step, the rover completes
a 360 degree scan in search of the tags. If one of the tags are
located, the robot will collect the tag using a mechanical claw.
The swarmie will then return to the home location in one motion
which will sum the displacement in the X direction and Y
direction to create a single step. There are tradeoffs when
designing a search pattern. This structured code will cover the
entire area, but unfortunately, a raking pattern will increase the
time it takes to complete scanning the area [3].

Figure 5. Diagram of Incremental Search Pattern

Originally, the code called for the rover to orient itself using local
positioning and a compass; however, a preset command proved
to be much more effective. When the swarm robot then returns to
search again, rather than trying to determine which direction it is
facing, it will rotate 180 degrees and then proceed to search. It
will follow the same initial path without stopping to scan areas
that have already been covered. Once the swarmie reaches an
unexplored location, it will then continue to scan and proceed in

1 meter increments until another tag is located. A diagram of the
search pattern can be found below.

IV. OBJECT DETECTION
Due to the frequent collisions experienced by the swarm robots,
it was necessary to focus on improving the robots’ response to
walls and other swarm robots. The code initially prompted 0.2
radian (~11.45 degree) turning increments when an object was
detected by the ultrasound sensors. This turning increment was
increased to 1.57 radians (90 degrees) to decrease the time it takes
the rover to return to its search for resources or tags. This change
within the code is show in Figure 6. Utilizing 90 and 180 degree
turns proved to be very effective because they complement the
square, stepping motion of the search pattern.

	
Figure 6. Obstacle Avoidance Algorithm Improvement

A goal of proper object identification by distinguishing the
difference between robots and walls was not achieved. Due to the
sensors being placed on the same axis, the robot is unable to
distinguish between objects based on height. To compensate for
this, future experimentation and competition could implement
modular sensor placement. This would provide the ability to place
one or multiple sensors on a higher or lower axis. This would
allow for one of the sensors to pass over any rover but not a wall.
Distinguishing between a robot and wall is important because the
response of a rover may not be the same for both. Optimizing the
response based on which object is interfering with the robot’s
motion could result in a decreased search time. For example, if
both swarm robots approach each other and turn 90 degrees to the
left and right when facing each other, a large portion of the grid
may go unexplored for some time.

V. VARIABLE ANALYSIS
The goal of this section was to make the sensor data easy to
manipulate and store. To accomplish this, the data must be
organized into an array format which updates at regular intervals
or continuously. These arrays can then be exported to a text file
where they can be saved as a matrix for further analysis. A
theoretical array containing the desired raw data is shown in
Equation.1 below. Table 1 contains the definitions for the data
stored in the array along with information concerning the
variables name, location, and how it's generated. After searching
the code it was observed that locating the source of the data was
much more difficult than observing where it was used. Due to this
it is assumed to be easier to extract the sensor data from the
current variable locations by publishing the data straight out of
the .cpp files.

(R#, T, CC, X, Y, θ, S1, S2, S3)

Table 1. Identified Sensor Data

Differing from the Sensor data is the Robot number (R#), a value
used to identify data generated by a specific robot. According to
previous Swarmathon competitors there does not exist a way
differentiate the robots without pulling the IP address, which is
not allowed. Due to this a method is being developed to assign a
ranking to each robot which would serve as an identification
number. While the communication of the data has not been
worked out the logic portion of the code is currently under
development. To distinguish the robots each shall generate a
random number, save the variable, and proceed publish the result
to the message board. All of the robots would be subscribed to
this data and receive an array of random variables when the
announcing process is completed. The robots would then compare
their individual saved values with the list and determine their
rankings correspondingly. The robot with the largest number will
assign itself the number “1”and subsequently each robot will
number itself depending on the “rank” of their number. If two
randomly generated numbers are identical the robots will be
directed to generate a fresh set of random numbers and begin the
comparison process again. This data can theoretically be used for
robot specialization and task delegation, however its primary
function will be allowing operators and the robots themselves
distinguish individual robot data from the memory matrix.

Table 2. Description of State_Machine States in Mobility.cpp

	

To obtain sensor data we began by looking into the
“mobility.cpp” file as this code can be considered the main
program for the swarm robots. After analyzing the code the base
behavior of the swarm bots was identified. The robots operate on
5 basic modes called “State_Machines” where the variables
dictate which mode (specified behavior) to follow.

Within this file the usage of multiple desired data points was
discovered, these being X-position, y-position, and orientation.
The default swarm program uses these variables to direct its
movement. By polling its current position (Point A) and setting a
goal (point B) the robot determines two points on the coordinate
plane. The robot then performs some simple trigonometry to find
the angle of the line connecting the two points. By reading its
current orientation the robot determines whether it needs to rotate
to match its orientation to the direction of the goal. Once the
deviation in angles falls below a certain threshold the robot breaks
out of the aligning program and enters the driving program where
it heads to the destination at a fixed velocity. As long as the angle
remains below the threshold the robot will not break into the
aligning program, but instead use minor adjustments to maintain
on course.

	
Figure 7. Swarm Bot Alignment Geometry. (Credit David

Heffernan)

The next piece of code reviewed was the “Obstacle.cpp” file. The
code operates by subscribing to data generated by the sonar
sensors, analyzing it, and determining an operating state. By
checking which sonar’s are detecting obstacles it specifies one of
four obstacle modes as the current state for the robot. Once the
correct mode has been determined (See Table 3) the data is
published and used by the “mobility.cpp” program. . The format
in which data is published follows the format
“obstaclePublish.publish(obstacleMode)” while “Obstacle.cpp”
operates is that it takes in sonar data then analyzes it to make a
decision between four states. It then publishes the corresponding
state to be used by other programs. The format in which data is
published appears to be as follows.

“obstaclePublish.publish(obstacleMode)”.

To subscribe to the data, “mobility.cpp” first announces

“ros::Subscriber obstacleSubscriber;”

And then later in the code appears to set a variable equal to the
subscribed data.

“obstacleSubscriber =
mNH.subscribe((publishedName + "/obstacle"), 10,
obstacleHandler);”

	

Table 3. Description of Obstacle Modes in
Obstacle.cpp

“Obstacle.cpp” operates is that it takes in sonar data then
analyzes it to make a decision between four states. It then
publishes the corresponding state to be used by other programs.
The format in which data is published appears to be as follows.

“obstaclePublish.publish(obstacleMode)”.

To subscribe to the data, “mobility.cpp” first announces

“ros::Subscriber obstacleSubscriber;”

And then later in the code appears to set a variable equal to the
subscribed data.

“obstacleSubscriber =
mNH.subscribe((publishedName + "/obstacle"), 10,
obstacleHandler);”

VI. CONCLUSION
It was necessary to compare various search patterns to determine
which would be the most effective. Although the rake covered the
entire area, it was important to experiment with a spiral and
stepping search pattern to determine which would cover the most
area in the shortest period of time. This would allow for the
maximum number of theoretical resources retrieved by the
autonomous swarm robots.

Figure 8. Spiral Search Simulation

The spiral method (shown in figure 8 and 9) proved to be effective
in scanning the area; however, it was very difficult to orient the
robots. Due to noise and low accuracy GPS tracking, the robots
would often misalign themselves making it difficult to return to
the goal zone. Using higher quality sensors and hardware could
provide much higher performance and programmability.

	
Figure 9. Map Readout of a Spiral Search Simulation

Figure 10. Simulation Result of One of the Zone's Pathing
with the Little Circles Representing the 360 Sweep at Each

Space

A more structured search method would then be created to
eliminate any errors associated with the robots ability to position
itself. A chessboard pattern was implemented to allow for the
rover to return home after collecting resources by summing the
steps it has moved away from home base. The 1 meter increments
would allow for the area to be divided up into simple sections for
the rovers to explore. After each step, the rover would complete a
360 degree scan and continue searching for resources. Figure 10
displays is an image of the simulated path.

	
VII. ACKNOWLEDGMENTS
A special thanks goes to the NASA Kennedy Space Center and
all of the volunteers for hosting the Swarmathon competition and
inviting Florida International University to participate. The
authors also extend their gratitude to the Robotics and
Automation Laboratory and the Department of Mechanical and
Materials Engineering at Florida International University in
Miami, Florida for providing guidance, lab space and equipment
for testing.

VIII. REFERENCES

[1] National Aeronautics and Space Administration, "Learn

more," 17 April 2017. [Online]. Available:
http://nasaswarmathon.com/about/.

[2] FIU Panther Swarm Team, "Development of FIU Panther
Swarm Algorith for NASA's Swarmathon Competition,"
Florida International University, Miami, Florida, 2016.

[3] Hoff, Nicholas, Robert Wood, and Radhika Nagpal.
"Distributed colony-level algorithm switching for robot
swarm foraging." Distributed Autonomous Robotic
Systems: 417-430, 2013.

[4] Richard, William K., and Stephen M. Majercik. "Swarm-
Based Path Creation in Dynamic Environments for Search
and Rescue." Proc. of Genetic and Evolutionary
Computation Conference, Philadelphia, PA, USA. N.p., 11
July 2012. Web. 12 Feb. 2016.

[5] Shoutao, Li, Lina, Li, Lee, Gordon and Zhang, Hao. “A
Hybrid Search Algorithm for Swarm Robots Searching in
an Unknown Environment.” 11 Nov. 2014. Web. Feb.
2016.

[6] Stolleis, Karl. "The Ant and the Trap: Evolution of Ant-
Inspired Obstacle Avoidance in a Multi-Agent Robotic
System." 26 Jun. 2015.

